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SUMMARY

A Taylor series-based finite volume formulation has been developed to solve the Navier–Stokes equations.
Within each cell, velocity and pressure are obtained from the Taylor expansion at its centre. The derivatives
in the expansion are found by applying the Gauss theorem over the cell. The resultant integration over
the faces of the cell is calculated from the value at the middle point of the face and its derivatives, which
are further obtained from a higher order interpolation based on the values at the centres of two cells
sharing this face. The terms up to second order in the velocity and the terms up to first order in pressure
in the Taylor expansion are retained throughout the derivation. The test cases for channel flow, flow past
a circular cylinder and flow in a collapsible channel have shown that the method is quite accurate and
flexible. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the finite volume method (FVM), the computational domain is usually divided into many cells.
It then integrates the governing equations over cells to obtain the discretized equations. For the
Navier–Stokes (NS) equations, the integration of the convection term and the diffusion term within
each cell is converted to that along its faces based on the Gauss theorem. Everything up to this stage
is mathematically exact. Numerical error will, however, develop as the procedure moves forward.

There are several sources of error in FVM. The first one is that the variables are usually defined
at the centre of each cell. Their values required on each face are obtained through interpolation
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from the centres of the two cells that share this face. For an unstructured mesh, the intersection
G of the line linking the two centres with the face is usually not the middle point of the face,
or there is the so-called skewness. Secondly the interpolation used to find the values at the face
centre will itself introduce error. The third source of error occurs when the integration along the
face is performed numerically.

In a recent work of Wu and Hu [1], the effect of the skewness was ignored. The face value
at G is obtained through a linear interpolation and the integration along the face is calculated by
multiplying the value at G with the area of the face. It can be shown in the present analysis below
that the accuracy of this procedure is of order O(h) for the convection term, where h is the typical
element size of the mesh. What is more important, however, is that accuracy of the diffusion
term is of order O(h0). The implication is therefore that the error in those results dominated by
diffusion may not decrease with the element size.

There are publications that have attempted to address some of these errors. For instance, Ferziger
and Peric [2] and Syrakos and Goulas [3] accounted for skewness by using the value and its
derivatives at the centre of the line linking two neighbouring cells to interpolate the value at the
face centre. Zang et al. [4] employed a third-order upwind quadratic scheme to interpolate velocity
at the face in curvilinear coordinates. A three-point-based second-order upwind scheme was also
used by Hu et al. [5]. As pointed by Wu and Hu [1], however, while two of the three points are
the centres of neighbouring cells, the third point used in Hu et al. [5] is the intersection of the
line linking these centres and one of the faces of the cell. The value at the third point is obtained
from another interpolation using the centre value of the face and a nodal value which is obtained
from further interpolation. The originally intended second-order accuracy may therefore be lost
after so many interpolations. For the surface integrals along the face, Lilek and Perić [6] used
Simpson’s rule based on the centre value of the face and its nodal values. These nodal values had
to be obtained by two successive interpolations, although they tried to maintain the same order of
accuracy at each interpolation.

In the present work, we shall develop a formulation to deal with all three sources of error
mentioned above with a consistent order of accuracy. In addition to velocity and pressure, their
spatial derivatives are also introduced at the cell centres. In particular, as the NS equations contain
the second-order derivatives of the velocity and first-order derivatives of the pressure, the velocity
in the cell is expanded into Taylor series up to the second order whereas the pressure is expanded
up to the first order. The derivatives are then obtained through the FVM based on the Gauss
theorem. When use of these derivatives is made, the interpolation for the face value is of higher
order accuracy, the error due to skewness is eliminated and the numerical integration over the face
is calculated by the centre values and its derivatives. All these provide the same order of accuracy
as a result.

Several examples are chosen for comparison and validation. The first one is the channel
flow where an analytical solution is available, which allows some detailed error analysis to
be made. In particular, the present formulation can give the exact solution for this case.
This means that the accuracy of the solution is independent to the number of elements used.
The error from the numerical simulation is due to the control error in the iteration. The
second example is flow past a circular cylinder where a large volume of published data is
available. The third example is flow in a collapsible channel. Luo and Pedley [7–10] have
published a series of papers on the problem as it has important applications in medical
modelling. All these test cases show that the present method is consistent, accurate and
flexible.
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2. FINITE VOLUME FORMULATION FOR THE NS EQUATIONS

ACartesian coordinate system O–xy is defined. All the physical parameters are nondimensionalized
by the density of the fluid �, a typical length of the body D and a typical velocity component U0.
Let � represent either the velocity component u in the x direction or v in the y direction. The
nondimensionalized NS equations for � with no gravity effect can be expressed as

��

�t
+∇(U�)= 1

Re
∇2�− �p

�xm
(1)

where U=(u,v) is the velocity vector, p is the pressure, m=1 corresponds to �=u and m=2
corresponds to �=v and (x1, x2)=(x, y). The Reynolds number is Re=U0D/� and � is the
kinematic viscosity of the fluid. To solve the problem, the fluid domain is divided into many small
triangular cells. Let h be the typical size of these cells. We can then integrate Equation (1) over a
cell Vi centred at point i and bounded by three surfaces A f j , j =1,2,3 (see Figure 1). This gives∫

Vi

��i

�t
dV +

3∑
j=1

∫
A f j

(
(U ·n)�− 1

Re

��

�n

)
dA= S� (2)

where n=(nx f j ,ny f j ) is the outward normal of the surface. The source term in this equation is
defined as

S� =−
∫
Vi

�p
�xm

dV (3)

As the variables are defined at cell centres, their values on faces are obtained through interpo-
lation. To achieve that with consistent order of accuracy, we draw a line perpendicular to face f j
from the centre point P(x f j , y f j ) of face f j , as shown in Figure 2. If the distance between two
cell centre points i and i j is

L f j =
√

(xi j −xi )2+(yi j − yi )2 (4)

points C and D are obtained from

xC = x f j − L f j

2
nx f j , yC = y f j − L f j

2
ny f j (5)

xD = x f j + L f j

2
nx f j , yD = y f j + L f j

2
ny f j (6)

Using the Taylor expansion, we have

�C =� f j −
�� f j

�L

(
L f j

2

)
+ 1

2

�2� f j

�L2

(
L f j

2

)2

− 1

6

�3� f j

�L3

(
L f j

2

)3

+O(h4) (7)

�D =� f j +
�� f j

�L

(
L f j

2

)
+ 1

2

�2� f j

�L2

(
L f j

2

)2

+ 1

6

�3� f j

�L3

(
L f j

2

)3

+O(h4) (8)
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Figure 1. A triangular element i with its three neighbours i1, i2, i3.
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Figure 2. Notation associated with face fj.

in which the derivative is taken in the direction from C to D or the direction of the normal n.
Thus,

� f j =
�C +�D−(�2� f j/�L2)(L f j/2)2

2
+O(h4) (9)

The values of � at points C and D can be obtained from the Taylor expansion within the
corresponding cells, or

�C = �i +
��i

�x
(xC −xi )+ ��i

�y
(yC − yi )+ 1

2

�2�i

�x2
(xC −xi )

2+ 1

2

�2�i

�y2
(yC − yi )

2

+1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
(xC −xi )(yC − yi )+O(h3) (10)

�D = �i j +
��i j

�x
(xD−xi j )+

��i j

�y
(yD− yi j )+ 1

2

�2�i j

�x2
(xD−xi j )

2+ 1

2

�2�i j

�y2
(yD− yi j )

2

+1

2

(
�2�i j

�x�y
+ �2�i j

�y�x

)
(xD−xi j )(yD− yi j )+O(h3) (11)
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Here �2�i j/�x�y and �2�i j/�y�x have been written separately. Although they are identical math-
ematically, these two terms could be numerically different in the calculation. Taking their average
usually provides a better accuracy.

The derivatives in Equations (10) and (11) can be obtained through integrations over the cell.
For the first-order ones, we have

1

Vi

∫
Vi

��i

�x
dV = 1

Vi

3∑
j=1

∫
A f j

�nx dA,
1

Vi

∫
Vi

��i

�y
dV = 1

Vi

3∑
j=1

∫
A f j

�ny dA (12)

which is exact. To calculate the integration over the face f j , we use

�=� f j +
�� f j

�A
A+ 1

2

�2� f j

�A2
A2+ 1

6

�3� f j

�A3
A3+O(h4) (13)

where A is measured along the face and A=−A f j/2 is the starting point. Since A f j/Vi =O(1/h),
we have

��i

�x
+O(h2)= 1

Vi

3∑
j=1

A f j nx f j

(
� f j +

1

24

�2� f j

�A2
A2

f j

)
+O(h3) (14)

��i

�y
+O(h2)= 1

Vi

3∑
j=1

A f j ny f j

(
� f j +

1

24

�2� f j

�A2
A2

f j

)
+O(h3) (15)

The left-hand sides of Equations (14) and (15) are approximations of those of Equations (12) and
(13), obtained from the Taylor expansions of ��i/�x and ��i/�y. Because the integration of the
terms of second derivatives on the left-hand side of Equations (14) and (15) is zero, the error is
dominated by the third-order term, which becomes O(h2) after it is divided by the volume Vi .
These two equations are therefore consistent with the principle of the method, which all the terms
up to the second order in the Taylor expansion should be retained.

Applying the above procedure to the diffusion term in Equation (2), we obtain

− 1

Re

1

Vi

∫
A

��

�n
dA=− 1

Re

1

Vi

3∑
j=1

�� f j

�L f j
A f j +O(h)=− 1

Re

1

Vi

3∑
j=1

�D−�C

L f j
A f j +O(h) (16)

For the convection term, we have

I = 1

Vi

∫
A
(U ·n)�dA= 1

Vi

3∑
j=1

[
U f j� f j A f j + 1

24

�2(U f j� f j )

�A2
A3

f j

]
+O(h3)

= 1

2Vi

3∑
j
U f j A f j

[
�C +�D− �2� f j

�L2

(
L f j

2

)2
]

+ 1

24Vi

3∑
j=1

�2(U f j� f j )

�2A2
A3

f j +O(h3)

= 1

2Vi

3∑
j=1

U f j A f j

[
�i +�i j +

��i

�x
(xC −xi )+ ��i

�y
(yC − yi )+ 1

2

�2�i

�x2
(xC −xi )

2
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+1

2

�2�i

�y2
(yC − yi )

2+ 1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
(xC −xi )(yC − yi )

+��i j

�x
(xD−xi j )+

��i j

�y
(yD− yi j )+ 1

2

�2�i j

�x2
(xD−xi j )

2

+1

2

�2�i j

�y2
(yD− yi j )

2+ 1

2

(
�2�i j

�x�y
+ �2�i j

�y�x

)
(xD−xi j )(yD− yi j )

−�2� f j

�L2

(
L f j

2

)2
]

+ 1

24Vi

3∑
j=1

�2(U f j� f j )

�A2
A3

f j +O(h2) (17)

� f j in Equation (17) is obtained from the central differencing method in Equation (9). It provides
a higher order of spatial accuracy, but it may be prone to instability in the time domain when
the Peclet number Pe=Re|U f j |L>Pe0, where Pe0 is the critical number. In this case, we use the
following second-order upwind scheme:

I = 1

Vi

3∑
j=1

U f j A f j

[
�i +

��i

�x
(x f j −xi )+ ��i

�y
(y f j − yi )

+1

2

�2�i

�x2
(x f j −xi )

2+ 1

2

�2�i

�y2
(y f j − yi )

2+ 1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
(x f j −xi )(y f j − yi )

]

+ 1

24Vi

3∑
j=1

�2(U f j� f j )

�A2
A3

f j +O(h2), U f j>0 (18)

I = 1

Vi

3∑
j=1

U f j A f j

[
�i j +

��i j

�x
(x f j −xi j )+

��i j

�y
(y f j − yi j )

+1

2

�2�i j

�x2
(x f j −xi j )

2+ 1

2

�2�i j

�y2
(y f j − yi j )

2+ 1

2

(
�2�i j

�x�y
+ �2�i j

�y�x

)
(x f j −xi j )(y f j − yi j )

]

+ 1

24Vi

3∑
j=1

�2(U f j� f j )

�A2
A3

f j +O(h2), U f j<0 (19)

Substituting above equations into Equation (2), we obtain

ap�i =
3∑
j=1

a f j� f j +S�+O(h) (20)
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where

a f j =−1

2
m f j + 1

Re

A f j

L f j
, ap = Vi

�t
+

3∑
j=1

b f j , b f j = 1

2
m f j + 1

Re

A f j

L f j
, m f j =U f j A f j (21)

S� = S�+S�
2 +S�

3 + Vi
�t

�i0 (22)

S�
2 = −1

2

3∑
j=1

m f j

[
��i

�x
(xC −xi )+ ��i

�y
(yc− yi )+ 1

2

�2�i

�x2
(xC −xi )

2+ 1

2

�2�i

�y2
(yC − yi )

2

+1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
(xC −xi )(yC − yi )+

��i j

�x
(xD−xi j )+

��i j

�y
(yD− yi )

+1

2

�2�i j

�x2
(xD−xi j )

2+ 1

2

�2�i j

�y2
(yD− yi j )

2+ 1

2

(
�2�i j

�x�y
+ �2�i j

�y�x

)
(xD−xi j )(yD− yi j )

−�2� f j

�L2

(
L f j

2

)2
]

− 1

24Vi

3∑
j=1

�2(U f j� f j )

�A2
A3

f j (23)

S�
3 = 1

Re

3∑
j=1

A f j

L f j

{[
��i j

�x
(xD−xi j )+

��i j

�y
(yD− yi j )+ 1

2

�2�i j

�x2
(xD−xi j )

2

+1

2

�2�i j

�y2
(yD− yi j )

2+ 1

2

(
�2�i j

�x�y
+ �2�i j

�y�x

)
(xD−xi j )(yD− yi j )

]

−
[

��i

�x
(xC −xi )+ ��i

�y
(yC − yi )+ 1

2

�2�i

�x2
(xC −xi )

2+ 1

2

�2�i

�y2
(yC − yi )

2

+1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
(xC −xi )(yC − yi )

]}
(24)

when Pe<Pe0. When Pe�Pe0 on face f j , we have

b f j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
m f j + 1

Re

A f j

L f j
, U f j>0,

1

Re

A f j

L f j
, U f j<0,

a f j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

Re

A f j

L f j
, U f j>0

−m f j + 1

Re

A f j

L f j
, U f j<0

(25)
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and the f j term in S�
2 becomes

−m f j

[
�� f j

�x
(x f j −xi )+

�� f j

�y
(y f j − yi )+ 1

2

�2�i

�x2
(x f j −xi )

2+ 1

2

�2�i

�y2
(y f j − yi )

2

+1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
(x f j −xi )(y f j − yi )

]
− 1

24Vi

�2(U f j� f j )

�A2
A3

f j , U f j>0 (26)

−m f j

[
��i j

�x
(x f j −xi j )+

��i j

�y
(y f j − yi j )+ 1

2

�2�i j

�x2
(x f j −xi j )

2+ 1

2

�2�i j

�y2
(y f j − yi j )

2

+1

2

(
�2�i j

�x�y
+ �2�i j

�y�x

)
(x f j −xi j )(y f j − yi j )

]
− 1

24Vi

�2(U f j� f j )

�A2
A3

f j , U f j<0 (27)

Equation (20) provides a procedure for iteration to obtain the solution for �i at current time t .
The solution at previous time �i0 is included in the source term in Equation (22). At t+�t , �i
is used to replace �i0 and this forms the time stepping method. When the semi-implicit scheme
is used, the coefficients ap and a f j at t can be obtained from the solution at the previous time
step or from �i0. For the fully implicit scheme, they can be obtained from the latest results of
�i during the iteration at the current time step. The former is used in the present paper. The

first-order derivatives required in the source terms S�
2 and S�

3 in Equation (20) can be obtained
from Equations (14) and (15). For the second-order derivatives, we define � as ��i/�x and � as
��i/�y. We then have

��i

�x
= 1

Vi

3∑
j=1

A f j nx f j

{
�g j +

��g j

�A
[−(x f j −xgj )ny f j +(y f j − ygj )nx f j ]+O(h)

}
(28)

��i

�y
= 1

Vi

3∑
j=1

A f j ny f j

{
�g j +

��g j

�A
[−(x f j −xgj )ny f j +(y f j − ygj )nx f j ]+O(h)

}
(29)

��i
�x

= 1

Vi

3∑
j=1

A f j nx f j

{
�g j +

��g j
�A

[−(x f j −xgj )ny f j +(y f j − ygj )nx f j ]+O(h)

}
(30)

��i
�y

= 1

Vi

3∑
j=1

A f j ny f j

{
�g j +

��g j
�A

[−(x f j −xgj )ny f j +(y f j − ygj )nx f j ]+O(h)

}
(31)

where (xgj , ygj ) is the intersection point between the line linking i and i j and face f j . Thus,

�g j =� j�i +(1−� j )�i j +O(h2), �g j =� j�i +(1−� j )�i j +O(h2) (32)

where

� j =
√

(xi j −xgj )2+(yi j − ygj )2√
(xi j −xi )2+(yi j − yi )2

(33)
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From these equations, the second-order derivatives in the normal direction and along the face can
be found using

�2� f j

�L2
= �2� f j

�x2
n2x f j +

(
�2� f j

�x�y
+ �2� f j

�y�x

)
nx f j ny f j +

�2� f j

�y2
n2y f j (34)

�2� f j

�A2
= �2� f j

�x2
n2y f j −

(
�2� f j

�x�y
+ �2� f j

�y�x

)
nx f j ny f j +

�2� f j

�y2
n2x f j (35)

where

�2� f j

�x2
= �2�g j

�x2
+O(h)=� j

��i

�x
+(1−� j )

��i j

�x
+O(h) (36)

�2� f j

�y�x
= �2�g j

�y�x
+O(h)=� j

��i

�y
+(1−� j )

��i j

�y
+O(h) (37)

�2� f j

�x�y
= �2�g j

�x�y
+O(h)=� j

��i
�x

+(1−� j )
��i j
�x

+O(h) (38)

�2� f j

�y2
= �2�g j

�y2
+O(h)=� j

��i
�y

+(1−� j )
��i j
�y

+O(h) (39)

Finally for the source term due to pressure, we have

�pi
�xm

= 1

Vi

∫
A
pnm dA+O(h)= 1

Vi

3∑
j=1

nm f j A f j p f j +O(h)

= 1

2Vi

3∑
j=1

nm f j A f j

[
pi + pi j + �pi

�x
(xC −xi )+ �pi

�y
(yC − yi )

+�pi j
�x

(xD−xi j )+ �pi j
�y

(yD− yi j )

]
+O(h) (40)

When f j is on the boundary, the above procedure has to be modified. For the Dirichlet boundary
condition �=�, the integration of the convection term over this face can be found from

I f j = 1

Vi

∫
A f j

(U�)ndA= 1

Vi

[
m f j� f j + 1

24

�2(U f j� f j )

�A2
A3

f j

]
+O(h3) (41)

or can be obtained analytically. For the diffusion term, we link points i and f j to form line L ,
which has an angle � with the x-axis. If the centre of L is Q, we have (see Figure 3)

��Q

�L
= � f j −�i

L
+O(h2) (42)
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�� f j

�L
=2

��Q

�L
− ��i

�L
+O(h2) (43)

Since

�� f j

�L
= �� f j

�x
cos�+ �� f j

�y
sin� (44)

�� f j

�A
=−�� f j

�x
ny f j +

�� f j

�y
nx f j (45)

Thus,

�� f j

�x
= (�� f j/�L)nx f j −(�� f j/�A)sin�

nx f j cos�+ny f j sin�
(46)

�� f j

�y
= (�� f j/�A)cos�+(�� f j/�L)ny f j

nx f j cos�+ny f j sin�
(47)

For the derivatives required in Equations (28) and (31), we have

�
�A

(
�� f j

�x

)
= (�2� f j/�A�L)nx f j −(�2� f j/�A2)sin�

nx f j cos�+ny f j sin�
(48)

�
�A

(
�� f j

�y

)
= (�2� f j/�A2)cos�+(�2� f j/�A�L)ny f j

nx f j cos�+ny f j sin�
(49)

where

�2� f j

�A�L
= 2

L

(
�� f j

�A
− ��i

�A

)
− �2�i

�A�L
+O(h) (50)

In reality, we can choose (x f j , y f j )=(xgj , ygj ) on the boundary. As a result, the derivatives in
Equations (48) and (49) will have no effect on Equations (28)–(31).

For the diffusion term on face f j , we can express

− 1

Vi

A f j

Re

�� f j

�n
=− 1

Vi

A f j

Re

�� f j/�L+(�� f j/�A)(ny f j cos�−nx f j sin�)

nx f j cos�+ny f j sin�
(51)

Q
L

fj

i
x

Figure 3. Notation associated with face f j on Dirichlet boundary.
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As a result of all these, we have

a f j =0, b f j = A f j

Re

2

nx f j (x f j −xi )+ny f j (y f j − yi )
(52)

Also the source terms due to face f j in S�
2 and S�

3 should be deleted. Instead a new source term

−Vi I f j + A f j

Re

[
2� f j

nx f j (x f j −xi )+ny f j (y f j − yi )

+−��i/�L+(�� f j/�A)(ny f j cos�−nx f j sin�)

nx f j cos�+ny f j sin�

]
(53)

should be added.
When f j is on the boundary with Neumann condition ��/�n=�, draw a line M passing the

cell centre i and parallel to f j . Let Q be a point on M and P a point on face f j , and PQ be
perpendicular to f j . If PQ= L= L f j/2, we have

�P −�Q

L
= 1

2

(
�P + ��Q

�L

)
+O(h2)

= 1

2

(
�P + ��Q

�x
nx f j +

��Q

�y
ny f j

)
+O(h2) (54)

Using Equation (10), we obtain

�P −�Q

L
= 1

2

{
�P +

[
��i

�x
+ �2�i

�x2
(xQ−xi )+ 1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
(yQ− yi )

]
nx f j

+
[

��i

�y
+ �2�i

�y2
(yQ− yi )+ 1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
(yQ− yi )

]
ny f j

}
+O(h2) (55)

Thus at the centre of the face, we have

� f j = �C + L

2

{
� f j +

[
��i

�x
+ �2�i

�x2
(xC −xi )+ 1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
(yC − yi )

]
nx f j

+
[

��i

�y
+ �2�i

�y2
(yC − yi )+ 1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
(xC −xi )

]
ny f j

}
+O(h3) (56)

where

xC = x f j −nx f j L , yC = y f j −ny f j L (57)
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From Equation (55), we also obtain

�� f j

�A
= ��i

�A
− �2�i

�x2
(xC −xi )ny f j + �2�i

�y2
(yC − yi )nx f j

+1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
[−(yC − yi )ny f j +(xC −xi )nx f j ]

+ L

2

[
�� f j

�A
+
(

−�2�i

�x2
+ �2�i

�y2

)
nx f j ny f j + 1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
(n2x f j −n2y f j )

]
+O(h2)

= ��i

�A
− �2�i

�x2
(x f j −xi )ny f j + �2�i

�y2
(y f j − yi )nx f j

+1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
[−(y f j − yi )ny f j +(x f j −xi )nx f j ]

+ L

2

[
�� f j

�A
+
(

�2�i

�x2
− �2�i

�y2

)
nx f j ny f j

]
+O(h2) (58)

�2� f j

�A2
= �2�i

�x2
n2y f j +

�2�i

�y2
n2x f j −

(
�2�i

�x�y
+ �2�i

�y�x

)
nx f j ny f j + L

2

�2� f j

�A2
+O(h) (59)

Using Equation (59), the integration of the convection term over f j becomes

I f j = 1

Vi

∫
A f j

(U�)ndA= 1

Vi

[
m f j� f j +

1

24

�2(U f j� f j )

�A2
A3

f j

]
+O(h2)

= 1

Vi
(m f j�i +SI )+O(h2) (60)

where

SI =m f j

[
��i

�x
(xC −xi )+ ��i

�y
(yC − yi )+ 1

2

�2�i

�x2
(xC −xi )

2+ 1

2

�2�i

�y2
(yC − yi )

2

+ 1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
(xC −xi )(yC − yi )

]

+m f j L

2

{
� f j +

[
��i

�x
+ �2�i

�x2
(xC −xi )+ 1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
(yC − yi )

]
nx f j
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+
[

��i

�y
+ �2�i

�y2
(yC − yi )+ 1

2

(
�2�i

�x�y
+ �2�i

�y�x

)
(xC −xi )

]
ny f j

}

+ 1

24

�2(U f j� f j )

�A2
A3

f j (61)

Here the order of accuracy of Equation (60) is O(h2) because of Equation (59).
The integration of the diffusion term over f j can be calculated analytically, or

− 1

Re

1

Vi

∫
A f j

��

�n
dA=− 1

Re

1

Vi

∫
A f j

�dA (62)

As a result of all these we have

a f j =0, b f j =m f j (63)

Also the source terms due to face f j in S�
2 and S�

3 should be deleted. Instead a new source term

−SI + 1

Re

∫
A f j

�dA (64)

should be added.
It would be appropriate at this stage to compare the scheme with that developed by Lehnhauser

and Schafer [11]. They also used the Taylor expansion to improve the accuracy in a different
manor. However, they did not include the second-order derivative in the analysis. For instance,
the flux across a face is calculated simply by multiplying the velocity at the face centre with the
face area, whereas in this paper Equation (14) is used, which includes the second-order derivative.
Thus, once again the present paper includes all the second derivatives. This leads the method to
be more accurate. In fact it becomes exact for the steady channel flow, which is to be discussed
in detail later.

3. PRESSURE CORRECTION THROUGH THE SIMPLE TECHNIQUE

The solution of Equation (20) does not automatically satisfy the continuity equation. This is usually
achieved through adjusting the pressure distribution and the so-called SIMPLE algorithm [12] is
one of the most commonly used. Here the method is adopted after some modifications, which is
summarized below. It starts by assuming an initial pressure distribution p+ with a velocity field
�+. Equation (20) can then be expressed as

ap�
∗
i =

3∑
j=1

a f j�
+
i j −

(
�p+

�xm

)
i
Vi +S (65)

where S contains all the source terms apart that due to pressure. The new velocity field �∗ may
not satisfy the required continuity equation. Thus a pressure correction p′ is introduced, or

p= p++ p′ (66)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:1299–1325
DOI: 10.1002/fld



1312 G. X. WU AND Z. Z. HU

Putting this into Equation (65), we have

ap�i =
3∑
j=1

a f j�
+
i j −

[
�(p++ p′)

�xm

]
i
Vi +S (67)

Subtraction of Equation (65) from (67) then gives

ui =u∗
i −�i

�p′
i

�x
(68)

vi =v∗
i −�i

�p′
i

�y
(69)

where �i =Vi/ap. We require the new velocity field ui and vi to satisfy the continuity equation:

�ui
�x

+ �vi

�y
=0 (70)

which can be expressed as

�u∗
i

�x
+ �v∗

i

�y
− �

�x

(
�i

�p′
i

�x

)
− �

�y

(
�i

�p′
i

�y

)
=0 (71)

Integrating over the cell, we obtain

Vi

(
�u∗

i

�x
+ �v∗

i

�y

)
−

3∑
j=1

� f j
�p′

f j

�n
A f j =0 (72)

in which the derivatives of the velocity are obtained from Equations (14) and (15). For the normal
derivative of p′ on the surface, we can use Equations (5) and (6) to express

� f j
�p′

f j

�n
= 1

2L f j
(�C +�D)(p′

D− p′
C )

= 1

2L f j

[
�i + ��i

�x
(xC −xi )+ ��i

�y
(yC − yi )+�i j + ��i j

�x
(xD−xi j )+ ��i j

�y
(yD− yi j )

]

×
[
p′
i j +

�p′
i j

�x
(xD−xi j )+

�p′
i j

�y
(yD− yi j )− p′

i

−�p′
i

�x
(xC −xi )−

�p′
j

�y
(yC − yi )

]
(73)

This gives

ai p
′
i =ap f 1 p

′
i1+ap f 2 p

′
i2+ap f 3 p

′
i3+Sp (74)
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where

ap f j = A f j

2L f j

[
�i + ��i

�x
(xC −xi )+ ��i

�y
(yC − yi )+�i j + ��i j

�x
(xD−xi j )+ ��i j

�y
(yD− yi j )

]
(75)

ai =ap f 1+ap f 2+ap f 3 (76)

Sp = −Vi

(
�u∗

i

�x
+ �v∗

i

�y

)

+
3∑
j=1

ap f j

[
�p′

i j

�x
(xD−xi j )+

�p′
i j

�y
(yD− yi j )− �p′

i

�x
(xC −xi )− �p′

i

�y
(yC − yi )

]
(77)

The derivatives of � and p′ with respect to x and y can be obtained in a manner similar to that
in Equation (40). Equation (74) is solved based on the iteration similar to Equation (20). In fact,
iteration is usually carried out only a few times. The obtained p′

i is then used for pressure and
velocity corrections in Equations (65), (68) and (69). This normally leads a faster convergence of
the solutions for the momentum and continuity equations.

4. RESULTS

The present FVM formulation may appear to be a bit lengthy. However, careful inspection can
easily show that the method does not bring any new real complexity. The format itself of Equation
(20) is, for example, virtually identical to that used in the other FVM (e.g. [1]). The difference is
in the details of the coefficients and the source term, but they can be easily calculated from the
geometrical configuration of the mesh. The CPU requirement for the extra computation of these
coefficients itself is insignificant. However, as the first and second derivatives of the velocity have
now entered the iteration through Equations (14) and (15), and through Equations (28)–(39), they
may converge much more slowly than the velocity itself if the same degree of accuracy is needed.
Thus, the extra CPU required is not mainly for the extra terms in the equations, but for the more
accurate results of the shear force and diffusion.

The solution starts from mesh generation that is based on a Delaunay triangulation and the
procedure is in Giraldo [13]. Initial values of the velocities, u, v, and the pressure, p, are set in all
the cell centres. Equation (20) is used to update the velocity and Equation (74) is used for pressure
correction. The process is repeated until the difference between the current result and that at the
previous iteration in the momentum equation falls below 1.0×10−6 and the error in the continuity
equation falls below 1.0×10−4, or �ui/�x+�vi/�y<1.0×10−4 at every cell.

4.1. Channel flow

We consider the flow in a rectangular channel for validation. The width of channel D is the length
scale used for nondimension and the x-axis is taken along the lower wall of the channel. The
analytical solution for the one-dimensional flow driven by a constant pressure gradient dp/dx can
then be expressed as

u=−Re

2

dp

dx
(y− y2), v=0 (78)
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Careful examination of the present formulation shows that almost no approximation is made in
the analysis for this problem. Take Equations (14) and (15), for example. If one applies the Taylor
expansion on the left-hand sides of these two equations, there will be a second-order derivative
term. However, this term will disappear after integration over the cell. On the right-hand sides of
these two equations, all the terms from the Taylor expansion have been included. Thus, these two
equations are exact in this case. The only approximation in this problem is made in Equation (17)
[and subsequently in Equation (41)]. If the Taylor expansion was applied to U ·n and � separately
rather to the combined (U ·n)�, an extra term (1/320)(�2U f j/�A2)(�2�/�A2)A5

f j would have
appeared. However, this term would not make too much difference in practice, as a mesh with
elements of typical size h=O(10−1) will lead to a coefficient of order O(10−7) in this term.

We consider a case with Re=96 and dp/dx=−0.125. The velocity is prescribed at the inlet
on the left-hand side of the channel, whereas the Neumann condition is used at the outlet. No-slip
condition is used on the side walls. The initial values of the velocity and pressure are taken as
zero at all cell centres. Three different meshes with h=0.1,0.05,0.025 are used as shown in
Figures 4–6. Table I gives the details of the meshes and the results at t=10. The error is defined
as the largest difference between the analytical solution and the numerical result. As expected, the
error corresponding to h=0.1 is already sufficiently small. In fact it can be further reduced if the
control errors in the momentum equations and continuity equation discussed at the beginning of
Section 4 are reduced. The result therefore shows that the present formulation is quite accurate.
Figure 7 shows the pressure contour from the simulation. As in the analytical solution, the pressure
is constant at a given value of x . Streamlines are given in Figure 8, which are parallel to the side
walls as in the analytical solution.

4.2. Flow past a fixed cylinder

Flow past a cylinder is a standard test case and is widely used for validation of computational fluid
dynamics methods. The computational configuration used for the present simulation is shown in
Figure 9 with Le=20D, Lr=20D and Ls=20D, where D is the diameter of the cylinder and is
the length scale used for nondimensionalization. We consider a case at Re=40. Grid convergence

Figure 4. Entire grid for channel flow (case 1).
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Figure 5. Entire grid for channel flow (case 2).

Figure 6. Entire grid for channel flow (case 3).

Table I. Errors of u in the ‘exact’ numerical solution for channel flow at Re=96.0.

Case Number of cells Number of nodes Error

1, h=0.100 202 122 7.985E−007
2, h=0.050 870 476 2.369E−007
3, h=0.025 3580 1871 6.608E−008

was carried out by three meshes as listed in Table II, where h is the size of a typical element on
the cylinder surface. The mesh structure near the cylinder corresponding to mesh 2 is shown in
Figure 10. In the unsteady flow, the time step is not only crucial for accuracy but also important
for stability. For a structured mesh, some relationships between the time step and element size
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Figure 7. Pressure contours for channel flow at Re=96.0.

Figure 8. Streamlines for channel flow at Re=96.0.

may be derived to ensure stability. For an unstructured mesh, it is rather difficult to derive a
simple equation to decide whether a scheme is (1) unconditionally unstable, (2) conditionally
stable or (3) unconditionally stable. However, as the present method uses a second-order unpwind
method, this almost rules out (1). A practical way to verify this hypothesis is to reduce the
time step systematically until the results have converged. Based on this principle, it is found that
�t=1.0×10−3 is sufficiently small for these three cases.

To achieve the accuracy given above, the CPU requirement on a 2.80GHz computer for each
time step at h=0.1. h=0.05 and 0.025 are 0.473, 1.176 and 3.720 s, respectively. The detailed
results at t=100 are provided. The drag coefficient, CD , the recirculation length of Föppl vortices,
L/D, and the separation angle, 	s , are given in Table III together with those in previous publications
for comparison. The table shows that the results have converged quite well and they are in good
agreement with published data. Figure 11 shows the streamlines. The symmetric recirculation
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D

Lr

Ls

Ls

Le

Figure 9. Computational configuration for flow past a cylinder.

Table II. Grid convergence test for flow past a cylinder at Re=40.0.

Number of nodes
Case Number of cells Number of nodes on the cylinder

1, h=0.100 5411 2760 29
2, h=0.050 7495 3816 57
3, h=0.025 10369 5277 105

X

Y

-6 -4 -2 0 2

-1

0

1

Figure 10. Grid around the cylinder.

Table III. Comparison for flow past a cylinder at Re=40.0.

Re=40.0 CD L/D 	s

Case 1 1.56 2.20 128.8◦
2 1.55 2.30 126.4◦
3 1.55 2.30 126.4◦

Published data 1.52 [14] 2.26 [5] 126.4◦ [5]
1.52 [15] 2.52 [16] 126.3◦ [16]

2.16 [17] 126.2◦ [17]
126.2◦ [14]

that exists behind the cylinder at this Reynolds number can be clearly seen. Figure 12 shows the
pressure contours.
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Figure 11. Streamlines for flow past a cylinder at Re=40.0.
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Figure 12. Pressure contours for flow past a cylinder at Re=40.0.

It is known that it is more difficult to obtain accurate local results such as pressure distribution
than the global result such as drag or lift. To demonstrate the accuracy of the present formulation,
Figure 13 gives the pressure distribution over the cylinder surface, in which the reference pressure
is taken as p=0 at the outlet. There is some small visible difference between the results from
mesh 1 and those from mesh 2. However, the results from meshes 2 and 3 are graphically identical.
This once again shows the accuracy of the present formulation.

4.3. Flow in a collapsible channel

Flow in a collapsible channel or tube has many practical applications, especially in bio-medical
flows. In a series of publications, Luo and Pedley [7–10] made detailed analysis for this case,
including the dynamic response of the collapsible segment. Here we shall reconsider the case to
further test the methodology and will also run simulations with smaller gaps. The computational
configuration is shown in Figure 14. The channel away from the collapsible section has a width
D=1.0. The section with varying width shown in the figure is part of a circle with origin at O and
with radius R=(L2/4+c2)/(2c). The flow at inlet is prescribed with u=0.0625y(1− y)Re and
v=0. The Neumann condition �u/�x=�v/�x=0 is imposed at the outlet and no-slip condition
is applied on the wall of the channel. The reference pressure is taken from the outlet where p=0
is assumed. Simulations are made for cases with c/D=0.4 and 0.6 shown in Figure 15.
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Figure 13. Pressure distribution around the cylinder at Re=40.0.
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Figure 14. Computational configuration for a collapsible channel.
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Figure 15. The schematic diagram of the collapsible segment for two cases.

Grid convergence is first carried for the case of c/D=0.4 with Lu =5.0, L=5.0 and Ld =7.0
at Re=300.0. The meshes near the collapsible segment and with elements corresponding to
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Figure 16. The grid details of collapsible segment for grid convergence test
at c/D=0.4 and Ld =7.0 at Re=300.0.

h=0.1,0.05,0.025 are shown in Figure 16(a)–(c), respectively. Table IV gives the comparison for
the force coefficients Fx and Fy on the collapsible segments at t=50. It shows that the grid with
h=0.05 provides results of sufficient accuracy in terms of forces, which is used in the subsequent
simulations. Table V presents the results at t=50 with Ld =30, whereas other parameters remain
the same as those of case 2 in Table IV. These two tables show that Fx is hardly affected by
the length of Ld while Fy is very much different. This is because to drive the flow forward in
these two cases the pressure gradient along the x direction is more or less the same, on which Fx
depends. Thus, it remains almost unchanged. For Fy it depends on the value of the pressure and
not the gradient in this configuration. Since the reference pressure p=0 is given at the outlet, the
pressure near the collapsible segment will be higher when the channel is longer. As a result Fy
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is bigger. The velocity profile for u at different sections of the channel are given in Figures 17
and 18 for Ld =7.0 and 30.0, respectively. For steady flow, it is expected that flow will return
to the parabolic distribution as that at the inlet when the section is far away from the collapsible
segment. Figures 17 and 18 have clearly showed that trend. However, Ld =7.0 does not seem to
be long enough for the flow at outlet to return to that at the inlet completely. When Ld =30.0, the
difference between the velocity profiles at the inlet and outlet is much smaller. We also plot the
velocity profiles at the same sections from results corresponding to Ld =7.0 and 30.0 in Figure 19.
The figure shows that the length of the downstream channel does not affect the velocity profile
significantly.

Further simulation is made for the case of c/D=0.6 with Ld =30.0. Figure 20 shows the
velocity profiles at the different sections of the channel at t=50. As expected, the maximum
velocity beneath the collapsible section is much bigger than that corresponding to c/D=0.4
because of the smaller gap between walls in this case. More detailed comparison between these
two cases at x=7.5,10 is given in Figures 21 and 22. Figure 20 also shows that the reverse flow
occurs at many sections. The flow at the outlet is different from that at inlet and is not even
symmetrical. All these are because the flow at c/D=0.4 is steady while that at c/D=0.6 is
unsteady. This can be more clearly seen in Figures 23 and 24 for the streamlines. Apart from a
confined zone near the corner of the collapsible segment, the flow corresponding to c/D=0.4 at

Table IV. Grid convergence test for flow in a collapsible channel with Ld =7.0 at Re=300.0.

Number of nodes
Case Number of cells Number of nodes on the collapsible part Fx Fy

1, h=0.100 3332 1847 50 6.75 −13.86
2, h=0.050 7576 4051 102 7.23 −14.07
3, h=0.025 17555 9158 204 7.20 −14.31

Table V. The drag and lift coefficients with Ld =30.0 at Re=300.0.

Number of nodes on the
Case Number of cells Number of nodes collapsible part Fx Fy

h=0.050 17 872 9518 102 7.23 −5.35
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Figure 17. The u-velocity profile at different x with c/D=0.4, Ld =7.0 and Re=300.0.
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Figure 18. The u-velocity profile at different x with c/D=0.4, Ld =30.0 and Re=300.0.

Figure 19. Comparison of the u-velocity profile at different x between Ld =7.0 with
dashed line and Ld =30.0 with solid line.
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Figure 20. The u-velocity profile at different x with c/D=0.6, Ld =30.0 and Re=300.0.

downstream is almost uniform and steady, whereas the same flow at c/D=0.6 is quite unsteady.
A snapshot of pressure distribution over the collapsible segment at t=50 is shown in Figure 25
for c/D=0.4 and 0.6. It shows that the maximum pressure in the latter is much bigger. The time
history for force coefficients in these two cases is shown in Figures 26 and 27. Once again, the force
for c/D=0.4 becomes steady when t>20, but Fy remains unsteady throughout the simulation for
c/D=0.6. What is interesting, however, is that Fx is still more or less steady at c/D=0.6 even
when the flow is already unsteady.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:1299–1325
DOI: 10.1002/fld



TAYLOR SERIES-BASED FINITE VOLUME METHOD 1323

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

u

c / D = 0.4
c / D = 0.6

Figure 21. The u-velocity profile at x=7.5 with different c/D at Ld =30.0 and Re=300.0.
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Figure 22. The u-velocity profile at x=10.0 with different c/D at Ld =30.0 and Re=300.0.
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Figure 23. Streamlines for c/D=0.4 at Re=300.0.

5. CONCLUSIONS

A new finite volume method for the Navier–Stokes equation has been developed. In addition to
the velocity and the pressure, the method has also introduced their derivatives at the cell centres.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:1299–1325
DOI: 10.1002/fld



1324 G. X. WU AND Z. Z. HU

X
10 20 30 40

0

0.5

1

1.5

y

Figure 24. Streamlines for c/D=0.6 at Re=300.0.

X
5 6 7 8 9 10

-15

-10

-5

0

5

10

15

20

25

P

c / D = 0.6

c / D = 0.4

Figure 25. The pressure distributions around the collapsible segment with
different c/D at Ld =30.0 and Re=300.0.
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Figure 26. The force coefficient Fx with different c/D at Ld =30.0 and Re=300.0.

As a result, the sources of error at each step have been revealed. This has allowed accurate results
to be obtained as demonstrated by the test cases. The results for the collapsible channel with small
gap are particularly promising. It shows that the method may be used for the case in which the
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Figure 27. The force coefficient Fy with different c/D at Ld =30.0 and Re=300.0.

collapsible segment is in large amplitude motion. It is also evident that the present formulation
can be further extended to the three-dimensional flow problem.
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